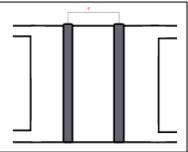
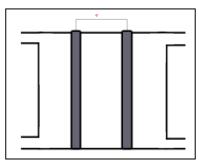
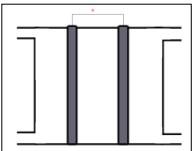

Lesson 12 fuel cells


- A hydrogen-oxygen fuel cell using an acidic electrolyte, operating at 25 °C has gaseous oxygen and hydrogen pumped in at a pressure of 100 kpa. This cell is 70.0% efficient in transforming chemical energy into electrical energy. Oxygen is kept in a full cylinder.
 - a) Write an overall equation for the redox reaction occurring in the fuel cell.
 - b) What is the volume of the cylinder if one full cylinder of oxygen allows for the evolution of 30.00 MJ of electrical energy?
- 2) Using the templates shown on the right construct a hydrogen –oxygen fuel cell using an:
 - Proton exchange membrane electrolyte
 - Solid oxide electrolyte
 - Molten sodium carbonate electrolyte
 - Alkaline (KOH) solution.
 - Acidic H₃PO₄ electrolyte
 - Label the:
 - Anode and cathode


ions flow through the electrolyte and their direction Products and reactants


Write the balanced half equations for each fuel cell. States not necessary.

• Hint. When adding the two half equations they should always add up to $O_2 + H_2 \rightarrow 2H_2O$

